Simultaneous Adsorption and Degradation of Cr(VI) and Cd(II) Ions from Aqueous Solution by Silica-Coated Fe0 Nanoparticles

نویسندگان

  • Yongchao Li
  • Hongpu Ma
  • Bozhi Ren
  • Tielong Li
چکیده

Core-shell silica-coated Fe(0) nanoparticles (Fe@SiO2) were prepared in one-step synthesis by aqueous reduction combined with modified Stöber method. The as-prepared Fe@SiO2 were then used for simultaneous removal of Cr(VI) and Cd(II) from aqueous solution. Batch tests indicated that Fe@SiO2 exhibited high removal capacity toward Cr(VI) and Cd(II). Cr(VI) was removed by Fe@SiO2 through reduction rather than adsorption, while Cd(II) removal was mainly through adsorption. The removal rate increased with increasing initial Fe NPs dose and decreased with increasing initial Cr(VI) and Cd(II) concentrations. Cd(II) adsorption was also strengthened by Cr(VI) reduction with the release of OH(-). The removals of Cr(VI) and Cd(II) were weakened in the presence of cations or humic acid, as a result of aggregation and less active site of Fe@SiO2. Overall, the simply prepared Fe@SiO2 were potential material for the heavy metals removed from water.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of adsorption efficiency of activated carbon/chitosan composite for removal of Cr (VI) and Cd (II) from single and bi-solute dilute solution

The aim of this study was to evaluate the adsorption capacity of the novel coated activated carbon by chitosan for removal of Cr (VI) and Cd (II) ions from single and bi-solute dilute aqueous solutions. In addition, the adsorption abilities of activated carbon (AC), chitosan (CH) and chitosan / activated carbon composite (CHAC) have been compared. Adsorption studies were performed in a batch sy...

متن کامل

Removal of Cr(VI) Ions from Aqueous Solutions Using Nickel Ferrite Nanoparticles: Kinetic and Equilibrium Study

Background & Aims of the Study: Heavy metals are the most important and main pollutants because of their accumulation and high toxicity even at very low dose and cause serious hazards to ecological system as well as human health. Thus, their removal has been challenged from drinking water and industrial waters with different technologies. The purpos...

متن کامل

Synthesis of 2,4-dinitrophenylhydrazine loaded sodium dodecyl sulfate-coated magnetite nanoparticles for adsorption of Hg(II) ions from an aqueous solution

Background: The rapid increase in agricultural and industrial development has made heavy metal pollution a serious environmental problem and public health threat; therefore, removal of heavy metals from water is important. The current study prepared DNPH@SDS@Fe3O4 nanoparticles as a novel and effective adsorbent for removal of Hg(II) ions from an aqueous solution. Methods: A selective adsorben...

متن کامل

Heavy Metals (Cr (VI), Cd (II) and Pb (II)) Ions Removal by Modified Jute: Characterization and Modeling

Jute modified has been used for adsorption of Cr (VI), Cd (II) and Pb (II) ions over a range ofinitial metal ion concentration. Adsorption process is done in batch mode. Adsorption isotherms ofthe heavy metals on adsorbents prepared were determined and correlated with common isothermequations. It was found that the Freundlich isotherm is better than Langmuir for explaining thebehavior of adsorp...

متن کامل

Removal of Cadmium and Lead Ions from Aqueous Solution by Nanocrystalline Magnetite Through Mechanochemical Activation

In this study, the removal of cadmium and lead ions from aqueous solution by nanocrystalline magnetite was investigated. The nanocrystalline magnetite was synthesized by mechanochemical activation of hematite in a high energy planetary mill in argon atmosphere for 45 hours. The ability of the synthesized nanocrystalline magnetite for removal of Cd(II) and Pb(II) from aqueous solutions was studi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013